Wd提问: 本地部署聊天ai
Ai批改: 根据知识库中的信息,以下是本地部署聊天AI的步骤指南,结合了多种方案的推荐方法:
一、推荐方案:Ollama + Deepseek R1 + Dify
1、环境准备
CUDA安装:
访问 [CUDA官网](https://developer.nvidia.com/cuda-downloads),选择 CUDA 11.6 版本,下载并执行精简安装(仅安装必要组件)。
PyTorch安装:
打开命令行(CMD),输入以下命令安装PyTorch(根据GPU型号选择CUDA版本):
bash
pip install torch torchvision torchaudio index-url https://download.pytorch.org/whl/cu116
2、安装Ollama
Ollama 是一个轻量级的LLM部署工具,简化模型加载流程:
下载并安装 Ollama:
[Ollama 官网](https://ollama.ai/)
验证安装:
bash
ollama version
3、下载Deepseek R1模型
在命令行中加载模型(Ollama会自动下载并缓存):
bash
ollama pull deepseek-r1
4、配置Dify(可选,用于前端界面)
安装Dify:
访问 [Dify 官网](https://dify.ai/),下载并安装Dify本地版本。
创建聊天应用:
1、打开Dify,点击左侧的“创建空白应用”。
2、选择“聊天助手”类型,命名应用(如“Deepseek聊天机器人”)。
3、在右上角的“应用类型”中选择 Ollama框架,并指定模型为 `deepseek-r1`。
4、配置完成后,Dify会生成一个网页端入口,可直接访问聊天界面。
二、其他部署方案
方案1:直接部署ChatGLM
1、克隆项目:
bash
git clone https://github.com/THUDM/ChatGLM
2、安装依赖:
bash
pip install -r requirements.txt
3、运行服务:
根据项目文档启动服务,可能需要配置CUDA环境变量。
方案2:本地部署Deepseek R1(无Dify)
1、安装依赖:
确保已安装Python、CUDA 11.6和PyTorch。
2、下载模型:
从 [Deepseek官网](https://deepseek.ai/) 或 GitHub 获取模型文件。
3、启动服务:
使用 `python server.py`(具体脚本需参考模型文档)。
三、注意事项
1、硬件要求:
推荐至少 NVIDIA GPU(如RTX 3060以上),CPU部署速度较慢。
模型大小不同,需预留足够硬盘空间(Deepseek R1约10GB)。
2、版本兼容性:
确保CUDA版本与PyTorch匹配(如CUDA 11.6对应PyTorch 2.0)。
3、模型权限:
部分模型需注册账号或申请API密钥(如Deepseek)。
四、快速验证
1、测试Ollama:
bash
ollama run deepseek-r1 -p 你好,今天天气怎么样?
2、通过Dify访问:
打开Dify应用,输入问题即可与AI交互。
五、扩展功能
知识库喂养:
使用工具(如LangChain)将自定义知识库与模型结合,实现个性化问答。
代码生成:
激活Deepseek的代码机器人功能,支持多语言编程辅助。
根据需求选择方案,推荐 Ollama + Dify 组合,流程简洁且提供可视化界面。如需进一步优化,可参考知识库中的具体项目文档。
0
IP地址: 55.202.86.77
搜索次数: 24
提问时间: 2025-04-23 15:19:34
热门提问:
铂金色发色
外汇交易商大平台
黄金戒指价格查询
ai检查文件
ai绘画ip上色
长春哪里卖黄金便宜
中科星图
国际黄金金价今日价格
兴业聚宏定开灵活配置混合C
ai设计班徽
豌豆Ai站群搜索引擎系统
关于我们:
三乐Ai
作文批改
英语分析
在线翻译
拍照识图
Ai提问
英语培训
本站流量
联系我们
温馨提示:本站所有问答由Ai自动创作,内容仅供参考,若有误差请用“联系”里面信息通知我们人工修改或删除。
技术支持:本站由豌豆Ai提供技术支持,使用的最新版:《豌豆Ai站群搜索引擎系统 V.25.05.20》搭建本站。